CS143 Handout 18
Summer 2012 July 16™, 2012

Semantic Analysis

What Is Semantic Analysis?

Parsing only verifies that the program consists of tokens arranged in a syntactically
valid combination. Now we’ll move forward to semantic analysis, where we delve even
deeper to check whether they form a sensible set of instructions in the programming
language. Whereas any old noun phrase followed by some verb phrase makes a
syntactically correct English sentence, a semantically correct one has subject-verb
agreement, proper use of gender, and the components go together to express an idea
that makes sense. For a program to be semantically valid, all variables, functions,
classes, etc. must be properly defined, expressions and variables must be used in ways
that respect the type system, access control must be respected, and so forth. Semantic
analysis is the front end’s penultimate phase and the compiler’s last chance to weed out
incorrect programs. We need to ensure the program is sound enough to carry on to
code generation.

A large part of semantic analysis consists of tracking variable/function/type
declarations and type checking. In many languages, identifiers have to be declared
before they're used. As the compiler encounters a new declaration, it records the type
information assigned to that identifier. Then, as it continues examining the rest of the
program, it verifies that the type of an identifier is respected in terms of the operations
being performed. For example, the type of the right side expression of an assignment
statement should match the type of the left side, and the left side needs to be a properly
declared and assignable identifier. The parameters of a function should match the
arguments of a function call in both number and type. The language may require that
identifiers be unique, thereby forbidding two global declarations from sharing the same
name. Arithmetic operands will need to be of numeric—perhaps even the exact same
type (no automatic i nt -to-doubl e conversion, for instance). These are examples of the
things checked in the semantic analysis phase.

Some semantic analysis might be done right in the middle of parsing. As a particular
construct is recognized, say an addition expression, the parser action could check the
two operands and verify they are of numeric type and compatible for this operation. In
fact, in a one-pass compiler, the code is generated right then and there as well. In a
compiler that runs in more than one pass (such as the one we are building for Decaf),
the first pass digests the syntax and builds a parse tree representation of the program. A
second pass traverses the tree to verify that the program respects all semantic rules as
well. The single-pass strategy is typically more efficient, but multiple passes allow for

better modularity and flexibility (i.e., can often order things arbitrarily in the source
program).

Types and Declarations

We begin with some basic definitions to set the stage for performing semantic analysis.
A type is a set of values and a set of operations operating on those values. There are
three categories of types in most programming languages:

Base types i nt,float,doubl e, char,bool, etc. These are the primitive
types provided directly by the underlying hardware. There may be
a facility for user-defined variants on the base types (such as C
enuns).

Compound types arrays, pointers, records, st r uct s, uni ons, classes, and so on.
These types are constructed as aggregations of the base types and
simple compound types.

Complex types lists, stacks, queues, trees, heaps, tables, etc. You may recognize
these as abstract data types. A language may or may not have
support for these sort of higher-level abstractions.

In many languages, a programmer must first establish the name and type of any data
object (e.g., variable, function, type, etc). In addition, the programmer usually defines
the lifetime. A declaration is a statement in a program that communicates this
information to the compiler. The basic declaration is just a name and type, but in many
languages it may include modifiers that control visibility and lifetime (i.e., st ati ¢ in C,
privat e in Java). Some languages also allow declarations to initialize variables, such
as in C, where you can declare and initialize in one statement. The following C
statements show some example declarations:

doubl e calculate(int a, double b); // function prototype

int x = 0; /1 gl obal variabl es avail abl e throughout
doubl e v; /1 the program
int main() {
int n3]; /1 local variables available only in main
char *n;

}

Function declarations or prototypes serve a similar purpose for functions that variable
declarations do for variables. Function and method identifiers also have a type, and the
compiler can use ensure that a program is calling a function/method correctly. The
compiler uses the prototype to check the number and types of arguments in function
calls. The location and qualifiers establish the visibility of the function (Is the function
global? Local to the module? Nested in another procedure? Attached to a class?) Type
declarations (e.g., C t ypedef , C++ classes) have similar behaviors with respect to
declaration and use of the new typename.

Type Checking

Type checking is the process of verifying that each operation executed in a program
respects the type system of the language. This generally means that all operands in any
expression are of appropriate types and number. Much of what we do in the semantic
analysis phase is type checking. Sometimes the rules regarding operations are defined
by other parts of the code (as in function prototypes), and sometimes such rules are a
part of the definition of the language itself (as in "both operands of a binary arithmetic
operation must be of the same type"). If a problem is found, e.g., one tries to add a char
pointer to a double in C, we encounter a type error. A language is considered strongly-
typed if each and every type error is detected during compilation. Type checking can be
done compilation, during execution, or divided across both.

Static type checking is done at compile-time. The information the type checker needs is
obtained via declarations and stored in a master symbol table. After this information is
collected, the types involved in each operation are checked. It is very difficult for a
language that only does static type checking to meet the full definition of strongly
typed. Even motherly old Pascal, which would appear to be so because of its use of
declarations and strict type rules, cannot find every type error at compile time. This is
because many type errors can sneak through the type checker. For example, if a and b
are of type i nt and we assign very large values to them, a * b may not be in the
acceptable range of i nt s, or an attempt to compute the ratio between two integers may
raise a division by zero. These kinds of type errors usually cannot be detected at
compile time. C makes a somewhat paltry attempt at strong type checking—things as
the lack of array bounds checking, no enforcement of variable initialization or function
return create loopholes. The typecast operation is particularly dangerous. By taking
the address of a location, casting to something inappropriate, dereferencing and
assigning, you can wreak havoc on the type rules. The typecast basically suspends type
checking, which, in general, is a pretty risky thing to do.

Dynamic type checking is implemented by including type information for each data
location at runtime. For example, a variable of type double would contain both the
actual double value and some kind of tag indicating "double type". The execution of
any operation begins by first checking these type tags. The operation is performed only
if everything checks out. Otherwise, a type error occurs and usually halts execution.
For example, when an add operation is invoked, it first examines the type tags of the
two operands to ensure they are compatible. LISP is an example of a language that
relies on dynamic type checking. Because LISP does not require the programmer to
state the types of variables at compile time, the compiler cannot perform any analysis to
determine if the type system is being violated. But the runtime type system takes over
during execution and ensures that type integrity is maintained. Dynamic type checking
clearly comes with a runtime performance penalty, but it usually much more difficult to
subvert and can report errors that are not possible to detect at compile-time.

Many compilers have built-in functionality for correcting the simplest of type errors.
Implicit type conversion, or coercion, is when a compiler finds a type error and then
changes the type of the variable to an appropriate type. This happens in C, for example,
when an addition operation is performed on a mix of integer and floating point values.
The integer values are implicitly promoted before the addition is performed. In fact,
any time a type error occurs in C, the compiler searches for an appropriate conversion
operation to insert into the compiled code to fix the error. Only if no conversion can be
done, does a type error occur. In a language like C++, the space of possible automatic
conversions can be enormous, which makes the compiler run more slowly and
sometimes gives surprising results.

Other languages are much stricter about type coercion. Ada and Pascal, for example,
provide almost no automatic coercions, requiring the programmer to take explicit
actions to convert between various numeric types. The question of whether to provide
a coercion capability or not is controversial. Coercions can free a programmer from
worrying about details, but they can also hide serious errors that might otherwise have
popped up during compilation. PL/I compilers are especially notorious for taking a
minor error like a misspelled name and re-interpreting it in some unintended way.
Here’s a particular classic example:

DECLARE (A, B, O CHAR(3);
B="123"; C= "456"; A=B + C

The above PL/1 code declares A, B, and C each as 3-character array/strings. It assigns
B and C string values and then adds them together. Wow, does that work? Sure, PL/I
automatically coerces strings to numbers in an arithmetic context, so it turns B and C
into 123 and 456, then it adds them to get 579. How about trying to assign a number to
a string? Sure, why not! It will convert a number to string if needed. However, herein
lies the rub: it converts the string using a default width of 8, so it actually converted the
resultto” 579". And because A was declared to only hold 3 characters, it will
truncate (silently), and A gets assigned " ". Probably not what you wanted, eh? (The
first design principle for PL/I was "Anything goes! If a particular combination of
symbols has a reasonably sensible meaning, that meaning will be made official.")

Case Study: ML Data Type

ML, or Meta-Language, is an important functional language developed in Edinburgh in
the 1970’s. It was developed to implement a theorem prover, but recently, it has gained
popularity as a general purpose language. ML deals with data types in a novel way.
Rather than require declarations, ML works very hard to infer the data types of the
arguments to functions. For example:

fun mult x = x * 10;

requires no type information because ML infers that x is an integer since it is being
multiplied by an integer. The only time a programmer must supply a declaration is if
ML cannot infer the types. For example,

fun sgr x = x * Xx;

would result in a type error because the multiplication operator is overloaded, i.e., there
exist separate multiplication operations for reals and for integers. ML cannot determine
which one to use in this function, so the programmer would have to clarify:

fun sgr x:int = x * x;

The fact that types do not have to be declared unless necessary, makes it possible for
ML to provide one of its most important features: polymorphism. A polymorphic
function is one that takes parameters of different types on different activations. For
example, a function that returns the number of elements in a list:

fun length(L) = if L =nil then O else length (tI(L)) + 1;

(Note: t1 is a built-in function that returns all the elements after the first element of a
list.) This function will work on a list of integers, reals, characters, strings, lists, etc.
Polymorphism is an important feature of most object-oriented languages also. It
introduces some interesting problems in semantic analysis, as we will see a bit later.

Designing a Type Checker

When designing a type checker for a compiler, here’s the process:

1. identify the types that are available in the language
2. identify the language constructs that have types associated with them
3. identify the semantic rules for the language

To make this process more concrete, we will present it in the context of Decaf. Decaf is
a somewhat strongly typed language like C since declarations of all variables are
required at compile time. In Decaf, we have base types (i nt, doubl e, bool , st ri ng),
and compound types (arrays, classes, interfaces). An array can be made of any type
(including other arrays). ADTs can be constructed using classes, but they aren’t
handled in any way differently than classes, so we don’t need to consider them
specially.

Now that we know the types in our language, we need to identify the language
constructs that have types associated with them. In Decaf, here are some of the relevant
language constructs:

constants obviously, every constant has an associated type. A scanner tells
us these types as well as the associated lexeme.

variables all variables (global, local, and instance) must have a declared
type of one of the base types or the supported compound types.

functions functions have a return type, and each parameter in the function

definition has a type, as does each argument in a function call.
expressions an expression can be a constant, variable, function call, or some
operator (binary or unary) applied to expressions. Each of the
various expressions have a type based on the type of the constant,
variable, return type of the function, or type of operands.

The other language constructs in Decaf (i f, whi | e, Pri nt, assignments, etc.) also have
types associated with them, because somewhere in each of these we find an expression.

The final requirement for designing a type checking system is listing the semantic rules
that govern what types are allowable in the various language constructs. In Decaf, the
operand to a unary minus must either be doubl e or i nt, the expression used in a loop
test must be of bool type, and so on. There are also general rules, not just a specific
construct, such as all variables must be declared, all classes are global, and so on.

These three things together (the types, the relevant constructs, and the rules) define a
type system for a language. Once we have a type system, we can implement a type
checker as part of the semantic analysis phase in a compiler.

Implementation

The first step in implementing a type checker for a compiler is to record type
information for each identifier. All a scanner knows is the name of the identifier so that
it what is passed to the parser. Typically, the parser will create some sort of
"declaration" record for each identifier after parsing its declaration to be stored for later.
On encountering uses of that identifier, the semantic analyzer can lookup that name
and find the matching declaration or report when no declaration has been found. Let’s
consider an example. In Decaf, we have the following productions that are used to
parse a variable declaration.

Vari abl eDecl -> Vari abl e ;
Vari abl e -> Type identifier

Type -> int
-> bool
-> doubl e
-> string
-> identifier
-> Type []
Consider the following variable declarations:

int a;
doubl e b;

The scanner stores the name for an identifier lexeme, which the parser records as an
attribute attached to the token. When reducing the Vari abl e production, we have the
type associated with the Type symbol (passed up from the Type production) and the
name associated with the i dent i fi er symbol (passed from the scanner). We create a
new variable declaration, declaring that identifier to be of that type, which can be stored
in a symbol table for lookup later on.

Representing base types and array types are pretty straightforward. Classes are a bit
more involved because the class needs to record a list or table of all fields (variables and
methods) available in the class to enable access and type checking on the fields. Classes
also need to be able to support inheritance of all parent fields that might be
implemented by linking the parent's table into the child's or copying the entries in the
parent table to the child's. Interfaces are similar to classes, but have only method
prototypes, and no implementation or instance variables.

Once we have the type information stored away and easily accessible, we use it to check
that the program follows the general semantic rules and the specific ones concerning
the language constructs. For example, what types are allowable to be added? Consider
Decaf's expression productions:

Expr -> Constant |
Lval ue |
Expr + Expr |
Expr - Expr |

LVal ue -> jdentifier

Constant -> intConstant |
doubl eConst ant |

In parsing an expression such as X + 7, we would apply the LVal ue and Const ant
productions to the two sides respectively. Passed up would be the identifier
information for the variable on the left and the constant from the right. When we are
handling the Expr + Expr production, we examine the type of each operand to
determine if it is appropriate in this context, which in Decaf, means the two operands
must be both i nt or both doubl e.

The semantic analysis phase is all about verifying the language rules, especially those
that are too complex or difficult to constrain in the grammar. To give you an idea, here
are a few semantic rules from the Decaf spec:

arrays the index used in an array selection expression must be of
integer type

expressions the two operands to logical && must both be bool type, the result
is bool type

functions the type of each actual argument in a function call must be
compatible with the formal parameter

classes if specified, the parent of a class must be a properly declared class
type
interfaces all methods of the interface must be implemented if a class states

that it implements the interface

As we can see from the above examples, much of semantic checking has to do with
types, but, for example, we also check that identifiers are not re-used within the same
scope or that break only appears inside a loop. The implementation of a type checker
consists of working through all of the defined semantic rules of a language and making
sure they are consistently followed.

Type Equivalence of Compound Types

The equivalence of base types is usually very easy to establish: an i nt is equivalent
only to another i nt ,a bool only to another bool . Many languages also require the
ability to determine the equivalence of compound types. A common technique in
dealing with compound types is to store the basic information defining the type in tree
structures.

array (arr)
RS

struct { 12 struct

char *s; [\

[n: n; (5] poi|nter (s) int(n) array (nums)

int nums[5];
} arr[12]; char 5/ \int

Here is a set of rules for building type trees:
arrays two subtrees, one for number of elements and one for the base
type

structs one subtree for each field

pointers one subtree that is the type being referenced by the pointer

10

If we store the type information in this manner, checking the equivalence of two types
turns out to be a simple recursive tree operation. Here’s an outline of a recursive test
for structural equivalence:

bool AreEquival ent(struct typenode *treel, struct typenode *tree2) {

if (treel == tree2) // if same type pointer, nust be equiv!
return true;
if (treel->type != tree2->type) /'l check types first

return false;
switch (treel->type) {
case T_INT: case T_DOUBLE: ...
return true; /]l same base type
case T_PTR
return (AreEquivalent(treel->child[0], tree2->child[O0]);
CASE T_ARRAY:
return (AreEquival ent(treel->child[0], tree2->child[0]) &&
(AreEquival ent (treel->child[1], tree2->child[1]);

The function looks simple enough, but is it guaranteed to terminate? What if the type
being compared is a record that is recursive (i.e., contains a pointer to a record of the
same type?) Hmmm... we need to be a bit more careful! To get around this, we could
mark the tree nodes during traversal to allow us to detect cycles or limit equivalence on
pointer types to in name only.

User Defined Types

The question of equivalence becomes more complicated when you add user-defined
types. Many languages allow users to define their own types (e.g., using t ypedef in C,
or t ype in Pascal). Here is a Pascal example:

type
little = array[1..5] of integer;
smal|l = array[1..5] of integer;
big = array[1..10] of integer;

var
a, b: array[l..5] of integer;
c: array[1..5] of integer;
d, e: little;
f, g: small;
h, i: big;

When are two types the same? Which of the types are equivalent in the above example?
It depends on how one defines "equivalence", the two main options are named versus
structural equivalence. If the language supports named equivalence, two types are the
same if and only if they have the same name. Thus d and e are type-equivalent, so are

f and g, and hand i . The variables a and b are also type-equivalent because they
have identical (but unnamed) types. (Any variables declared in the same statement
have the same type.) But c is a different, anonymous type. And even though the snmal |
type is a synonym for | i t t | € which is a synonym for an array of 5 integers, Pascal,

11

which only supports named equivalence, does not consider d to be type-equivalent to a
or f . The more general form of equivalence is structural equivalence. Two types are
structurally equivalent if a recursive traversal of the two type definition trees matches
in entirety. Thus, the variables a through g are all structurally equivalent but are
distinct from h and i .

Which definition of equivalence a language supports is a part of the definition of the
language. This, of course, has an impact on the implementation of the type checker of
the compiler for the language. Clearly, a language supporting named equivalence is
much easier and quicker to type check than one supporting structural equivalence. But
there is a trade-off. Named equivalence does not always reflect what is really being
represented in a user-defined type. Which version of equivalence does C support? Do
you know? How could you find out? (The first programming language that allowed
compound and complex data structures was Algol 68. This language allowed for
recursively defined type expressions and used structural equivalence.)

Type Compatibility, Subtyping
In addition to establishing rules for type equivalency, the type system also defines type

compatibility. Certain language constructs may require equivalent types, but most
allow for substitution of coercible or compatible types.

We've already talked a bit about type coercion. Ani nt and a doubl e are not type
equivalent, but a function that takes a double parameter may allow an integer argument
to be passed because an integer can be coerced to a double without loss of precision.
The reverse may or may not be true: in C, a doubl e is substitutable for an i nt (it is
truncated); in Java, a typecast is required to force the truncation. This sort of automatic
coercion affects both the type checker and the code generator, since we need to
recognize which coercions are valid in a particular context and if required, generate the
appropriate instructions to actually do the conversion.

Subtypes are a way of designating freely compatible types. If a data type has all of the
behavior and features of another type, to where it is freely substitutable for that type,
we say it is a subtype of that type. C's enuns, for example, allow you to define new
subtypes of i nt, similar to Pascal subrange type. A subtype is compatible with its
parent type, which means an expression of the subtype can always be substituted where
the general type was expected. If a function is expected an i nt as a parameter,
substituting an enumthat will only have value 1 or 2, for example, is perfectly fine.
Thus the type checker needs to have an awareness of compatible types to allow such a
substitution.

In object-oriented languages, inheritance and interfaces allow other ways for subtypes
to be defined. The type checker allows an instance of a subclass can be freely
substituted for an instance of the parent class.

12

Scope Checking

A simple shell scripting language might require all variables to be declared at the top-
level so they are visible everywhere. But that throws all identifiers into one big pot and
prevents names from ever being used again. More often a language offers some sort of
control for scopes, constraining the visibility of an identifier to some subsection of the
program. Global variables and functions are available anywhere. Local variables are
only visible within certain sections. To understand how this is handled in a compiler,
we need a few definitions. A scope is a section of program text enclosed by basic
program delimiters, e.g., { } in C, or begi n- end in Pascal. Many languages allow
nested scopes that are scopes defined within other scopes. The scope defined by the
innermost such unit is called the current scope. The scopes defined by the current scope
and by any enclosing program units are known as open scopes. Any other scope is a
closed.

As we encounter identifiers in a program, we need to determine if the identifier is
accessible at that point in the program. This is called scope checking. If we try to access a
local variable declared in one function in another function, we should get an error
message. This is because only variables declared in the current scope and in the open
scopes containing the current scope are accessible.

An interesting situation can arise if a variable is declared in more than one open scope.
Consider the following C program:

int a;

void Binky(int a) {
int a;
a = 2;

}

When we assign to a, should we use the global variable, the local variable, or the
parameter? Normally it is the innermost declaration, the one nearest the reference,
which wins out. Thus, the local variable is assigned the value 2. When a variable name
is re-used like this, we say the innermost declaration shadows the outer one. Inside the
Bi nky function, there is no way to access the other two a variables because the local
variable is shadowing them and C has no mechanism to explicitly specific which scope
to search.

There are two common approaches to the implementation of scope checking in a
compiler. The first is to implement an individual symbol table for each scope. We
organize all these symbol tables into a scope stack with one entry for each open scope.
The innermost scope is stored at the top of the stack, the next containing scope is
underneath it, etc. When a new scope is opened, a new symbol table is created and the

13

variables declared in that scope are placed in the symbol table. We then push the
symbol table on the stack. When a scope is closed, the top symbol table is popped. To
find a name, we start at the top of the stack and work our way down until we find it. If
we do not find it, the variable is not accessible and an error should be generated.

There is a disadvantage to this approach, besides the obvious overhead of creating
additional symbol tables and doing the stack processing. All global variables will be at
the bottom of the stack, so scope checking of a program that accesses a lot of global
variables through many levels of nesting can run slowly. The overhead of a table per
scope can also contribute to memory bloat in the compiler.

Nevertheless, this approach has the advantage that each symbol table, once populated,
remains immutable for the rest of the compilation process. The declaration records
associated with each symbol may change as you add more information in the process,
but the mappings themselves will not. Often times, immutable data structures lead to
more robust code.

The other approach to the implementation of scope checking is to have a single global
table for all the scopes. We assign to each scope a scope number. Each entry in the
symbol table is assigned the scope number of the scope it is contained in. A name may
appear in the symbol table more than once as long as each repetition has a different
scope number.

When we encounter a new scope, we increment a scope counter. All variables declared
in this scope are placed in the symbol table and assigned this scope’s number. If we
then encounter a nested scope, the scope counter is incremented once again and any
newly declared variables are assigned this new number. Using a hash table, new names
are always entered at the front of the chains to simplify the searches. Thus, if we have
the same name declared in different nested scopes, the first occurrence of the name on
the chain is the one we want.

When a scope is closed, all entries with the closing scope number are deleted from the
table. Any previously shadowed variables will now be accessible again. If we try to
access a name in a closed scope, we will not find it in the symbol table causing an error
to be generated. The disadvantage of the single combined symbol table is that closing a
scope can be an expensive operation if it requires traversing the entire symbol table.

There are two scoping rules that can be used in block-structured languages—static
scoping and dynamic scoping. In static scoping, a function is called in the environment of
its definition (i.e., its lexical placement in the source text), where in dynamic scoping, a
function is called in the environment of its caller (i.e., using the runtime stack of
function calls). For a language like C or Decaf, the point is moot, because functions
cannot be nested and can only access their local variables or global ones, but not the

14

local variables of any other functions. But other languages such as Pascal or LISP allow
non-local access and thus need to establish scoping rules for this. If inside the Bi nky
function, you access a non-local identifier x, does it consider the static structure of the
program (i.e., the context in which Bi nky was defined, which may be nested inside other
functions in those languages)? Or does it use the dynamic structure to examine the call
stack to find the nearest caller who has such a named variable? What if there is no x in
the enclosing context—can this be determined at compile time for static scoping? What
about dynamic? What kinds of data structure are necessary at compile-time and run-
time to support static or dynamic scoping? What can you do with static scoping that
you can't with dynamic or vice versa? Over time, static scoping has won out over
dynamic— what might be the reasoning it is preferred?

Object Oriented Issues

Consider the two distinct pieces of a class definition: its interface and its
implementation. Some object-oriented languages tie the two together and a subclass
inherits both. In such a case, the subclass has an "is-a" relationship with its parent, and
an instance of the subclass can be substituted wherever an instance of the superclass is
needed: it is a subtype.

A language may support inheritance of implementation without interface, via a feature
like C++ pri vat e inheritance. The new class has the behavior internally, but it is not
exposed to the client. A St ack class might use pri vat e inheritance from a generic
Vect or class to get all the code for managing a linear collection but without allowing
clients to call methods like i nser t At that defeat the LIFO discipline. In such a case,
the St ack is not a subtype of a Vect or . (A similar feat could also be provided with
composition of a Vect or as an instance variable inside the St ack class).

It is also possible to inherit interface without implementation through a feature such as
Java or Decaf interfaces. An interface is a listing of method prototypes only. There is no
code, no instance variables, nothing more than declarations establishing the function
signatures. When a class declares that it implements the interface, it is required to
provide the implementation for all of the required methods. In this case, the
relationship between the interface and the class is in the agreement to adhere to a
behavior but not shared implementation. The class is a subtype of the interface type.

In a common form of inheritance, a derived class inherits both interface and
implementation from the parent. Often a copy-based approach is used to implement
inheritance. The storage for each derived class or subtype contains all the information
needed from the parent because it was copied directly into the object.

Another issue in object-oriented languages is polymorphism. We saw this feature
earlier when discussing ML, but the term takes on a slightly different meaning in a
language like C++ or Java. Polymorphism in C++ refers to the situation in which

15

objects of different classes can respond to the same messages. For example, if we have
classes for boat, airplane, and car, the objects of these classes might all understand the
message t r avel , but the action will be different for each class. In C++, polymorphism
is implemented using virtual functions. Methods of the same name can have different
definitions in different classes. For example, consider this excerpt from a hypothetical
drawing program:

cl ass Shape {
public:
virtual void Draw);
virtual void Rotate(int degrees);

s
class Rect: public Shape {
public:
void Draw);
void Rotate(int degrees) {}
s
class Oval : public Shape {
public:
void Draw);
voi d Rotate(int degrees) {}
i

If we have an array of different shape objects, we can rotate all of them by placing the
following statement inside a loop that traverses the array:

shapes[i]->Rot at e(45);

We are rotating all the objects in the list without providing any type information. The
receiving object itself will respond with the correct implementation for its shape type.

The primary difference between vi rt ual functions and non-vi rt ual functions is
their binding times. Binding means associating a name with a definition or storage
location. In C++, the names of non-vi rt ual functions are bound at compile time. The
names of vi rt ual functions are bound at run-time, at the time of the call to the
method. To implement this, each vi r t ual method in a derived class reserves a slot in
the class definition record, which is created at run-time. A constructor fills in this slot
with the location of the vi rt ual function defined in the derived class, if one exists. If
it does not exist, it fills in the location with the function from the base class.

16

Bibliography
A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. Reading, MA:
Addison-Wesley, 1986.

J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill,
1990.

A. Pyster, Compiler Design and Construction. New York, NY: Van Nostrand Reinhold,
1988.

J. Tremblay, P. Sorenson, The Theory and Practice of Compiler Writing. New York, NY:
McGraw-Hill, 1985.

